Linear Codes from the Axiomatic Viewpoint

Jay A. Wood

Department of Mathematics Western Michigan University http://homepages.wmich.edu/~jwood/

Noncommutative rings and their applications, IV University of Artois, Lens June 9, 2015

4. MacWilliams extension theorem for other weights

- Homogeneous and egalitarian weights
- Symmetrized weight compositions
- General weight: reducing to symmetrized weight compositions
- Weights with maximal symmetry
- ▶ Lee and Euclidean weights on $\mathbb{Z}/N\mathbb{Z}$

Notation

- ▶ Let R be a finite associative ring with 1.
- ► Let A be a finite unital left R-module: the alphabet.
- ▶ Let $w : A \to \mathbb{Q}$ be a **weight**: w(0) = 0. Extend to A^n by

$$w(a_1,\ldots,a_n)=\sum_{i=1}^n w(a_i).$$

Symmetry groups

Recall the symmetry groups of w:

$$G_{lt} = \{u \in \mathcal{U}(R) : w(ua) = w(a), a \in A\},\$$

 $G_{rt} = \{\phi \in GL_R(A) : w(a\phi) = w(a), a \in A\}.$

- ▶ $\mathcal{U}(R)$ is the group of units of R, and $GL_R(A)$ is the group of invertible R-linear homomorphisms $A \to A$.
- Recall that I will usually write homomorphisms of left modules on the right side.

Axiomatic Viewpoint

Orbit spaces

► For an information module *M*, recall the **orbit** spaces:

$$\mathcal{O} = \mathcal{G}_{\mathsf{lt}} ackslash M \ \mathcal{O}^\sharp = \mathsf{Hom}_R(M,A)/\mathcal{G}_{\mathsf{rt}}$$

5 / 20

W-map

▶ The *W*-map is

$$W: F_0(\mathcal{O}^{\sharp}, \mathbb{Q}) \to F_0(\mathcal{O}, \mathbb{Q}).$$

▶ For $x \in M$,

$$W(\eta)(x) = \sum_{[\lambda] \in \mathcal{O}^{\sharp}} w(x\lambda)\eta([\lambda]).$$

Using generating character to define a weight

- Suppose the alphabet A admits a generating character ρ : Soc(A) cyclic.
- ▶ Fix a subgroup $U \subseteq GL_R(A)$.
- ▶ Define a weight $w_U : A \to \mathbb{C}$:

$$w_U(a) = 1 - \frac{1}{|U|} \sum_{\phi \in U} \rho(a\phi), \quad a \in A.$$

7 / 20

Axiomatic Viewpoint June 9, 2015

Properties of w_U

- $w_U(0) = 0$.
- ▶ Re-index: $U \subseteq G_{rt}(w_U)$.
- ▶ By the summation formulas and ρ generating: for any nonzero left R-submodule $B \subseteq A$, and any $a_0 \in A$,

$$\sum_{b\in B}w_U(a_0+b)=|B|.$$

- ▶ We say that w_U is **egalitarian** on cosets of B.
- $w_{GL_R(A)}$ is called **homogeneous**: Constantinescu, Heise, Greferath, Schmidt, Honold, Nechaev.

w_U has EP

- ▶ Suppose $w_U(x\Lambda) = w_U(xN)$ for all $x \in M$.
- ▶ Equation of characters: for all $x \in M$,

$$\sum_{i=1}^n \sum_{\phi \in U} \rho(x\lambda_i \phi) = \sum_{j=1}^n \sum_{\psi \in U} \rho(x\nu_j \psi).$$

- Use linear independence of characters: for j=1, $\psi=\mathrm{id}_A$, there exist $i=\sigma(1)$ and $\phi_1\in U$ with $\rho(x\lambda_{\sigma(1)}\phi_1)=\rho(x\nu_1)$ for all $x\in M$.
- ρ generating: $\nu_1 = \lambda_{\sigma(1)}\phi_1$. Inner sums agree, reduce outer sum, and continue by induction.

June 9, 2015

9 / 20

Symmetrized weight composition

- ▶ This time, no weight. Just ring R, alphabet A, and a subgroup $G \subseteq GL_R(A)$.
- ▶ Define an equivalence relation from the right action of G on A: for $a, b \in A$, $a \sim b$ if $b = a\phi$ for some $\phi \in G$. Denote equivalence class of a by [a].
- ▶ For $a \in A$ and $x = (x_1, ..., x_n) \in A^n$, define the symmetrized weight composition (swc) by

$$swc_{[a]}(x) = |\{i : x_i \in [a]\}|.$$

▶ Example: $R = A = \mathbb{Z}/4\mathbb{Z}$, $G = \{\pm 1\}$.

◆ロト ◆問ト ◆意ト ◆意ト · 意 · 釣り○

June 9, 2015

swc has EP

- ▶ Assume A has generating character ρ (cyclic socle).
- ▶ Suppose $C_1, C_2 \subseteq A^n$ are two left R-linear codes.
- ▶ Suppose $f: C_1 \rightarrow C_2$ is a linear isomorphism of R-modules that preserves swc:

$$swc_{[a]}(xf) = swc_{[a]}(x), \quad a \in A, x \in C_1.$$

▶ Then f extends to a G-monomial transformation.

Proof (a)

- Result dates from 1997, but we will use the local-global idea of Barra, Gluesing-Luerssen (2014). This is joint work with N. El Garem and N. Megahed.
- As before, view preservation of swc in terms of Λ , $N: M \rightarrow A^n$:

$$\operatorname{swc}_{[a]}(x\Lambda) = \operatorname{swc}_{[a]}(xN), \quad a \in A, x \in M.$$

▶ Local: for each $x \in M$, there exist a permutation σ_x and elements $\phi_{1,x}, \ldots, \phi_{n,x} \in G$ with $x\nu_i = x\lambda_{\sigma_x(i)}\phi_{i,x}$.

Proof (b)

▶ Local to global: apply $\phi \in G$ and ρ , then sum over ϕ and i. For every $x \in M$:

$$\sum_{i=1}^n \sum_{\phi \in G} \rho(x\nu_i \phi) = \sum_{i=1}^n \sum_{\phi \in G} \rho(x\lambda_{\sigma_x(i)}\phi_{i,x}\phi).$$

▶ Dependence on x disappears! For all $x \in M$:

$$\sum_{i=1}^{n} \sum_{\phi \in G} \rho(x\nu_i \phi) = \sum_{i=1}^{n} \sum_{\phi \in G} \rho(x\lambda_i \phi).$$

 Proceed as before to get G-monomial transformation.

General weight: reducing to swc

- Now include a weight w. Suppose alphabet A has cyclic socle. Form swc using $G = G_{rt}(w)$.
- For any $b = (b_1, \ldots, b_n) \in A^n$,

$$w(b) = \sum_{i=i}^{n} w(b_i) = \sum_{[a] \in A/G_{\mathsf{rt}}} w(a) \operatorname{swc}_{[a]}(b).$$

▶ For a scalar multiple $rb \in A^n$, $r \in R$:

$$w(rb) = \sum_{[a] \in A/G_{rt}} w(ra) \operatorname{swc}_{[a]}(b).$$

• w(rb) depends only on class $[r] \in G_{lt} \backslash R$.

Sufficient condition for EP for w

Form matrix A with rows indexed by nonzero $[r] \in G_{lt} \backslash R$ and columns indexed by nonzero $[a] \in A/G_{rt}$:

$$\mathcal{A}_{[r],[a]}=w(ra).$$

- If matrix A has trivial right nullspace, then alphabet A has EP for w.
- ▶ When A = R is commutative, A is square. Condition is det $A \neq 0$.

Proof (a)

- Suppose $f: C_1 \to C_2$ is an isomorphism of R-modules and that f is a linear isometry with respect to w. Codes are given by $\Lambda: M \to A^n$ and $N: M \to A^n$, as usual.
- ▶ Isometry: $w(x\Lambda) = w(xN)$, for all $x \in M$.
- ▶ For every $x \in M$, $r \in R$:

$$0 = w(rx\Lambda) - w(rxN)$$

$$= \sum_{[a] \in A/G_{rt}} w(ra) \left\{ swc_{[a]}(x\Lambda) - swc_{[a]}(xN) \right\}$$

Proof (b)

- The condition on matrix A implies $swc_{[a]}(x\Lambda) = swc_{[a]}(xN)$ for every $a \in A$ and $x \in M$.
- ▶ This means that $f: C_1 \rightarrow C_2$ preserves swc.
- ► Apply EP for swc to conclude that *f* extends to a *G*_{rt}-monomial transformation.
- ▶ This result has been used for computer verification of EP for Lee weight on $R = \mathbb{Z}/N\mathbb{Z}$ for $N \le 2048$.

Cases of maximal symmetry

- ▶ There has been progress on finding more explicit conditions over ring alphabets (A = R) when the weight w has maximal symmetry: $G_{lt} = G_{rt} = \mathcal{U}(R)$.
- ▶ When *R* is a product of chain rings: Greferath, Mc Fadden, Zumbrägel, 2013.
- When R is a principal ideal ring: Greferath, Honold, Mc Fadden, Wood, Zumbrägel, 2014. Here det \mathcal{A} is factored into terms $\sum_{0 < dR \leq aR} w(d)\mu(0,dR)$, for $a \in R$, where μ is the Möbius function for the poset of principal right ideals of R.

June 9, 2015

Examples over $\mathbb{Z}/N\mathbb{Z}$

- ▶ In addition to the Hamming weight, there are three additional weights that are easy to define on \mathbb{Z}/NZ .
- ▶ Lee weight: viewing $\mathbb{Z}/NZ = \{0, 1, ..., N-1\}$, Lee weight is $w_L(a) = \min\{a, N-a\}$.
- Euclidean weight: $w_E(a) = w_L(a)^2$.
- ► Complex Euclidean weight: $|\exp(2\pi i a/N) 1|^2 = 2 2\cos(2\pi a/N)$ (square of complex length).

19 / 20

Axiomatic Viewpoint June 9, 2015

Facts about EP over $\mathbb{Z}/N\mathbb{Z}$

- ▶ Only the complex Euclidean weight is easy: it is the egalitarian weight using $U = \{\pm 1\}$.
- ▶ EP for Lee weight has been numerically verified (\mathcal{A} invertible) for $N \leq 2048$. It has been proven for $N = 2^k, 3^k$ and for N = p = 2q + 1 or p = 4q + 1 (Barra) where p and q are prime.

20 / 20